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A mixture of a gas and small solid particles is considered which, far upstream, is 
in a constant equilibrium state, and moves with a constant velocity. The existence 
of shock waves is investigated in the four possible cases, namely for frozen flow, 
for two kinds of partlyfrozen flow, and for equilibrium flow. It is shown that, in all 
these cases, compressive shocks may exist, if the upstream velocity exceeds the 
velocity of sound appropriate to the type of flow. Rarefaction shocks are im- 
possible in each case. Moreover, it is shown that the downstream values of the 
flow parameters are determined uniquely, and the direction of their change is 
given. Only rather general assumptions concerning the behaviour of the gas are 
needed. The paper takes into account the influence of the finite particle volume 
fraction unlike most previous papers on the topic. 

1. Introduction 
The motion of a gas which contains an appreciable number of small solid 

particles differs greatly from the motion of the pure gas. This is because a finite 
time is needed for the velocity and temperature of the particles to adjust to those 
of the gas. Because of this relaxation, in general, there exists a difference between 
the velocity and the temperature of the particles and the gas. 

I n  this paper the stationary one-dimensional flow of a mixture is treated. It is 
presumed that the upstream values of the velocity and the temperature are the 
same for both constituents. 

The structure of shock waves in such a flow was considered by Carrier (1958). 
According to  Carrier the change of the flow conditions is accomplished in two 
phases. First, there occurs a compressive change in the state of the gas, which is 
consistent with the usual shock relations for the pure gas. Since this compression 
takes place in a few mean free paths of the gas molecules, the relaxation processes, 
which require much larger distances, cause very little change in the state of the 
particles. Therefore the relaxation processes may be considered as frozen. This 
frozen shock is followed by the relaxation zone, where the equilibrium is re- 
established. The extent of this second region depends on the characteristic lengths 
of the relaxation processes, i.e. on the relaxation lengths. On a scale which is 
much larger than both relaxation lengths, the frozen shock together with the 
relaxation zone appears as a so-called equilibrium shock. The change in the state 
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of the mixture, undergoing an equilibrium shock, is given by certain shock 
relations, too. In  order to exhibit the transition from frozen to equilibrium con- 
ditions, Carrier calculated and discussed the velocity of the gas as a function of 
that of the particles, for some characteristic values of the parameters across the 
whole relaxation zone. 

Rudinger (1964) found that some flow variables do not always vary mono- 
tonically in therelaxation zone. He also drew attention to the fact that equilibrium 
shocks may occur a t  upstream velocities which permit no frozen shock. In  such 
a case the change of the flow conditions is fully dispersed, and only if the scale 
is chosen suitably does it appear as an equilibrium shock. 

Both authors made the assumption that the pure gas follows the perfect gas 
law. Moreover, they used an approximation, which is mainly to neglect two 
effects. The first of these is the reduction of the volume of the gas caused by the 
occupation of a finite volume by the particles. The second effect is the acceleration 
of the particles produced by the pressure gradient acting on them. Both effects 
vanish if the particle volume fraction tends to zero. 

Rudinger (1965) demonstrated that the approximation discussed above gives 
rise to an error in the results concerning the frozen shock, as well as in those 
concerning the equilibrium shock. In  the second case, even a small particle 
volume fraction may cause a considerable error. 

At this stage of knowledge it seems necessary t o  study the effects in a more 
general way. Therefore in this paper an investigation is made into the possible 
discontinuous changes of the flow conditions in the mixture, and under what 
conditions they occur. The number of assumptions is kept at  a minimum. 
Thus only some rather general assumptions concerning the behaviour of 
the pure gas are used, which are fulfilled by most of the common gases. 
Moreover, the influence of the finiteness of the particle volume fraction is not 
neglected. 

First, the existence and uniqueness of frozen compressive shock waves 
are proved. I n  the following section the corresponding proof is sketched for 
a partly frozen compressive shock wave, which is characterized by the fact 
that the temperature of the particles reaches its equilibrium value while 
the other relaxation process is frozen. In  the last section the existence and 
uniqueness of compressive shock waves, with velocity equilibrium, is investi- 
gated. Thus all cases are studied which may occur if, by choosing a suitable 
scale, the extent of the relaxation zone can be ignored. Moreover, the results are 
needed as a basis for a general discussion of the qualitative behaviour of 
the flow variables across the relaxation zone. This will be the subject of another 
paper. 

2. Assumptions and basic equations 

have been used by previous investigators are kept in this paper. These are: 

of the gas molecules. 

Some of the assumptions concerning the properties of the particles which 

(i) The dimensions of the particles are much larger than the mean free path 
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(ii) All particles consist of the same incompressible material. Their shape is 

(iii) The particle diameter does not vary, i.e. any mass transfer between the 

(iv) The temperature gradient in the interior of a particle may be neglected. 
(v) Direct interactions between the particles may be neglected. 
Since the calculation of the local change of the flow conditions in the neigh- 

bourhood of a single particle is an exceedingly complex task, the ensemble of 
the particles is treated as a second continuum. Then, a t  each point of the flow 
field, the velocity of this 'particle continuum' is a mean value of the velocities of 
all particles being contained in a volume element with dimensions of the order of 
magnitude of a few inter-particle distances. In  the same way, a temperature 
of the particles may be defined a t  each point of the flow field. Velocity and state 
variables of the gas are introduced in an analogous way. Characterization of 
the state of the mixture is completed by giving the value of the particle volume 
fraction. 

In  addition to the assumptions concerning the properties of the particles, it  is 
assumed that the influence of viscosity and heat conduction of the gas is of 
importance only in the gas-particle interaction processes. 

In this paper the one-dimensional stationary flow is considered, its direction 
being identified with the direction of the positive x-axis. Far upstream (x +- - co) 
the mixture is assumed to be in a constant state of equilibrium (index 0). Then 
the equations of conservation of the mass of the gas, the mass of the particles, 
the momentum and the energy of the mixture, may be written in the following 
form (cf. Kraiko & Sternin 1965; Rudinger 1965): 

approximately spherical and they have equal size.? 

particles and the gas is excluded. 

l - s  1-so 
uo I -u = ~ 

VG 'GO 

l - €  

VG 
----u2+ppsv2+p = 

Herein, s is the particle volume fraction, vG the specific volume of the gas, pp 
the density of the particle material. u and v are the velocities of gas and particles, 
respectively. The total pressure is denoted by p .  Since, on the present assump- 
tions, the random motion of the particles contributes to the pressure only very 

t Dropping the assumption of equal size of the particles leads to different relaxation 
lengths for the different types of particles. The present considerations are valid also for this 
case if all expressions like 'a length smaller than the relaxation length' are replaced by 
'a length smaller than the smallest relaxation length '. 
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little, the difference between the total pressure of the mixture and that of the 
gas is negligible (cf. Rudinger 1965). The enthalpy per unit mass of the gas is 
denoted by h,, the particle temperature by T, and the specific heat of the particle 
material by cp,  which is assumed to be a constant. 

The equations of conservation of momentum and energy of the particles across 
a shock front, where the relaxation processes can be considered as frozen, reduce 
to (cf. Kraiko & Sternin 1965; Rudinger 1965): 

TP = TGO, (2.6) 
where T, is the gas temperature. 

On the other hand, if the flow is considered in a scale much larger than the 
relaxation lengths, a discontinuity leads to an equilibrium state, and (2.5) and 
(2.6) have to be replaced by 

2, = u, (2.7) 

T, = T,. (2.8) 

= s@)i (2.9) 

(2.10) 

The behaviour of the gas may be described by an equation of state of the form 

where s, is the entropy per unit mass of the gas. With the aid of Gibbs's relation, 

T, ds, = dhG - V, dP, 

the quantities h, and TG may be expressed as functions of 
the system of equations is closed. 

and v,. Thereby 

In  the following, the volume expansivity of the gas is assumed to be positive: 

(2.11) 

I n  general, this inequality is satisfied by the common gases. With use of (2.11) 
and of the conditions of thermal and mechanical stability of the gas some further 
inequalities may be deduced: ("c) > o ,  (2.12) 

8% p 

(2.13) 

(2.14) 

3. Frozen shock waves 
The flow conditions behind a frozen shock wave (index F )  are characterized by 

the equations (2.1)-(2.6). Inthis case, (2.4) may be simplifiedwith (2.5) and (2.6): 
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If the gas does not contain any particles, the equations (2.2), (2.5) and (2.6) are 
identities. Three equations are left which, with eo = eF = 0,  reduce to the ordinary 
shock relations relating the quantities uF, vGF, p F  to u,, vG0, p,. (See Becker 
(1968), for example.) Elimination of u, and uF leads to the equation of the 
Hugoniot curve, i.e. the locus of all states (vGF,pF), which can be reached from 
a fixed state (vG,,p0). By comparison of the Hugoniot curve with the isentropes, 
the following facts may be proved (cf. Serrin 1959): 

(i) Only final states with vGF Q vG0 (compression) are characterized by 
sGF 3 aGo; i.e. only these states may be reached by a physical system. 

(ii) Final states with vGF < vGo exist only if the upstream velocity u, exceeds 
the upstream velocity a, of sound in the gas, i.e. if u, > ao. 

(iii) The final state ( v G F , ~ ~ )  and the final velocity uF are uniquely determined 
by fixing the upstream state (vGo,po) and velocity u,. 

I n  this paper, corresponding statements concerning the flow of the mixture 
will be proved, using geometrical considerations, as Cowan did for the flow of 
a pure gas. (See Cowan 1958.) 

3.1. DeJinition of an Hugoniot curve 
I n  the present case the six equations (2.1)-(2.3), (2.5), (2.6) and (3.1) contain the 
ten quantities u0, vGo, p,, 6, and up, vGF, p,, eF, vF,  TpF.  Elimination of u,, uF, vF 
and TpF gives two equations relating vGF, p F ,  eF t o  Yao,  p,, 6,. A discussion corre- 
sponding to that of a pure gas would be given by comparison of the projection 
of this curve into the ( vGF, p,)-plane with the projections of the isentropes. Since 
it is not possible to find an explicit relation between vGR andpF, such a discussion 
seems to be very complicated. This difficulty is overcome by eliminating the 
quantity vGF instead of eF. Thus, an 'Hugoniot curve' is obtained in the (eF,pF)-  
plane (in the following the index F is omitted): 

where 

266, 
L(6, 6,) = 1 - ~. 

€+q) 

(3.3) 

(3.4) 

p = ppva is the ratio of the densities of the particle material and the gas. 
If one is concerned with a special gas, the function hG(vG,p) is known. Inserting 

this function and the equations (3.3)-(3.4) into (3.2) gives the equations of the 
Hugoniot curve. By definition of an Hugoniot function H as 

this equation is reduced to H = 0. 
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3.2. Isentropes 

Since the temperature of the particles remains constant across a frozen shock, 
the entropy of the particles, too, does not change. Hence, in this case, the only 
change of entropy is that of the entropy of the gas, and consequently there 
is no difference between the isentropes of the mixture and those of the gas. Thus 
the behaviour of the Hugoniot curve given in the ( E ,  p)-plane has to be compared 
with that of these isentropes. For this reason some knowledge about the shape of 
these isentropes in the (E,p)-plane is required. That is, the application of the 
transformation V ,  = v,(€) according to (3.3) to the isentropes given in the form 

P = P(vc ;  SG), (3.71 

with S, as a parameter, has to be studied. 
First, the differentiation of (3.7) leads to 

The first factor at  the right side has negative sign, as may be concluded from its 
relation to the velocity of sound (denoted by a) in the pure gas: 

(3.9) 

Furthermore, it may be shown (see appendix A) that the second factor has 
negcztive sign too, i.e. 

d v ,  ~ < 0, 
d E  

(3.10) 

if the following inequalities hold: po > 4, (3.11) 

0 < Eo < Q. (3.12) 

The first of these relations is always valid, since the density of a solid material is 
much greater than that of a gas. With regard to the assumptions explained in the 
second section, the condition (3.12) is also no severe restriction, since the neglect 
of direct interactions of the particles requires that the distances between the 
particles be not too small. 

With the help of (3.9) and (3.10) it is concluded from (3.8) that 

(2) > o .  
sc 

Further differentiation of (3.8) in view of (3.9) leads to 

where 

(3.13) 

(3.14) 

(3.15) 

(3.16) 



Shock waves in gas-particle mixtures 639 

With the assumption that (3.11) holds and that (3.12) may be extended to all 

(3.17) 
values reached by E ,  i.e. 

it may be shown (see appendix B) that 

O < € < + ,  

f(E) # *  (3.18) 

Now the gas is assumed to  satisfy the condition 

2, b 8.t (3.19) 

Using (3.18) and (3.19) it is concluded from (3.14) that 

(f5) > o .  
SQ 

Further, in view of (2.12) and (2.14), (2.10) yields 

P* 

- 1  

- 1  (1 /3~0)-1 

FIGURE 1. Qualitative behaviour of the isentropes (the domains 
e* < - 1 and E* > (1/3e0)- 1 are excluded by (3.17)). 

(3.20) 

(3.21) 

(3.22) 

The qualitative shape of the isentropes following from (3.13), (3.20) and (3.21) 
is shown in figure 1. Using the transformation 

(3.23) 

the quantities E* and p* are introduced as co-ordinates in this figure, as well 
aa in the following. 

t Note that, if the gas follows the perfect gas law, the quantity 2, is given by 
2, = 1 + y, where y is the ratio of the specific heats of the gas. Hence (3.19) is satisfied 
well by perfect gases. 
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N=N2 

3.3. Behaviour of the Hugoniot function on certain curves in the (s*,p*)-plane 

On using (2.10), (3.3), (3.4) and (3.23) the differential of the Hugoniot function 
(3.5) is 

d f i  = 2TGdSG+po1)*MdN, (3.24) 

where the quantity M has the form 

In the following only the sign of M is needed; for s < 4 this is given by 

sgnM = -sgns*. (3.25) 

The differential dN introduced in (3.24) is 

dN=--+ l ) a C * .  :** (1-;2€* 2 + s *  €* 

Hence the quantity N is a constant on the curves 

with 

€*(€* + 2)  
p* = 5 (s*+ q i  

(3.26) 

€ *  

’ 5. 

(3.27) 

(3.28) 

The shape of these curves is shown in figure 2. The direction of increasing values 
of N is inferred from 

1 
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The following statements concerning the properties of the Hugoniot function 
may be derived from the foregoing considerations: 

(i) Behaviour of H(e*,p*) in the initial point. In the point e* = p* = 0 the 
Hugoniot function is equal to zero: 

H(0,O) = 0. (3.29) 

(ii) Behaviour of H(e*,p*) along isochors and isobars. It may be deduced from 
(3.24) that 

@ ) p ,  = 2TG (2) pt + ( g I p * 3  

(3.30) 

(3.31) 

On the other hand, it is inferred from (3.25) and (3.26) that 

- 2M 
-- > 0, MP* = E * ( E * +  1 )  ( € * + 2 )  

(an) = 1. 
p* @ E* 

Using these results, the relation (3.25), and the inequalities (3.21) and (3.22), 
the following conclusions concerning the behaviour of H(e*, p*)  along isochors 
and isobars may be drawn from (3.30)-(3.31): 

< 0, for p* < 0, 

> 0, for E* < 0. (gIe* 
(3.32) 

(3.33) 

(iii) Behaviour of H(s*,p*) along the curves N = const. On the curves 
N = const. the relation (3.24) reduces to 

dH = 2TGdsG. 

That is, the sign of the differential of H agrees with that of sff. 
By considering the isentropes (figure 1) and the curves N = const. (figure 2 )  

it may be seen that, in the first and third quadrant, there exist points in which 
a curve of one kind touches one of the other kind. I n  figure 3 such a point B is 
marked. Along the part OB of the curve N = N3 the entropy sff increases with 
increasing E * ,  while in B the entropy sG begins to decrease. In  the second and 
fourth quadrant, along a curve N = N-z, the entropy increases with increasingp". 

Denoting the locus of touching points B by C, it may be said: if one travels 
away from the origin, along a curve N = const., on the second-quadrant side of 
C, one finds increasing values of sG, and hence of H, while on the fourth-quadrant 
side of C, one finds decreasing values of these functions. 

(iv) Behuviour of H(e*,p*) along isentropes. On isentropes the relation (3.24) 
reduces to dH = pop*M dN. 

41 Fluid Mech. 38 
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Hence, taking account of (3.25), it  may be concluded that: 

+ sgndN, 
- sgndN, I in the 2nd and 4th quadrant, 

in the 1st and 3rd quadrant. 
sgndH = (3.34) 

-1 

- I  

FIGURE 3. Behaviour of the entropy 86 and of the function H along two curves 
N = const. (sG and H increase in direction of the arrows). 

-1  

- 1  

FIGURE 4. Behaviour of the Hugoniot function H along isentropes 
(H  increases in direction of the arrows). 

Regarding figure 4, the following statements can be made. In the f is t  and third 
quadrant, along the isentropes with sa < sc0, the quantity N increases with 
increasing tF. Furthermore, in the first quadrant, along the isentropes with 
sG > scfo, the value of N decreases with increasing E* up to the intersection point B 
of the isentrope and C,, whereas from the point B the quantity N increases 
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with increasing e*. When (3.34) is taken into account, these results lead to the 
behaviour of H ,  as indicated by the arrows in figure 4. Only the folIowing state- 
ments are needed below: in the first quadrant, on travelling along an isentrope 
away from the origin, one finds increasing values of H on the second-quadrant 
side of CB, and decreasing values of H on the fourth-quadrant side of CB; in the 
third quadrant, along scf = sGo, the function H decreases with increasing e*. 

3.4. The shape of the Hugoniot curve 
The results of the last section enable one to make some remarks about the locus at 
which the Hugoniot function is equal to zero, i.e. the locus of the Hugoniot curve. 

To start with the first quadrant, consider the boundary of the shaded area in 
figure 5 (u). This boundary consists of parts of twoisentropes, of a curveN = const., 

H 
sG, -1 

P* 

(4 
FIGURE 5. (a) Behaviour of H along the boundary OPQRO in the 

(e*,p*)-plane. ( b )  The curve OP'Q'R'O in the (e*,H)-plane. 

and of the €*-axis. The behaviour of the Hugoniot function H(e*,p*) along this 
curve follows from the considerations givenin the last section, and in the figureit is 
indicated by arrows. The boundary OPQRO may be interpreted as the projection 
into the (e*, p*)  -plane of a curve on the surface H = H(e* , p*) ,  givenin an (e*, p*,  H )  - 
space. Hence the projection of the same curve into the ( E * ,  H)-plane has the shape 
OP'Q'R'O shown in figure 5 ( b ) .  Contrary to the figure, the value of H at R' may 
exceed that at P'. But in both cases H does not vanish along OP'Q'R'O, and 
hence along OPQRO, except at the point 0. 

A similar consideration leads to the correspondence between the boundary 
OBPO of the shaded area in figure 6(a)  and the curve OB'P'O in figure 6 ( b ) .  

Hence in the first quadrant, on each curve N = const. cutting the isentrope 
sG = sao, there exists one and only one point, other than the origin 0, where 
H = 0. This point is situated between the intersection point B with C, and the 

41-2 



B’ 

H 

(0) 

FIGURE 7. (a) Behaviour of H along OPRO and along OPQO in the (s*,p*)-plane. 
(b )  The curves OP‘R‘O and OP‘Q’O in the (s*, H )  -plane. 

the isentrope sG = sGo. As figure 7 ( b )  shows, on each isobar p* = const., there 
exists exactly one point where H = 0. This point is situated between the inter- 
section point P with the isentrope sa = s,, and the intersection point R with 
the p*-axis. 

I n  the second and fourth quadrant, the function H(s*, p*)  varies monotonically 
along the curves N = const. Hence H does not vanish except a t  the origin. 
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Thus it is shown that the Hugoniot curve H = 0 has the qualitative shape given 
in figure 8. 

-1 

P* H=O 

- 1  

FIGURE 8. Qualitative shape of the Hugoniot curve H = 0. 

Along the Hugoniot curve in the vicinity of the origin, the deviation of sG from 
the value sGo is of third order in E * :  

(3.35) 

where E = e/( 1 - e )  is the ratio of the volume fractions of the particles and the 
gas, and 

(3.36) 

3E(P - 1)  
- (p+E)2 

G 

- - 1 - P(P - E )  + E(P + E )  
(P + E)2 

Since the density ratio p exceeds the Value I, while the ratio 01 the volume traction 
is smaller than 1 if E < 4, it may be concluded from the second form given for G,: 

G, < 1. (3.37) 

Hence, according to (3.35), in the vicinity of the origin the qualitative shape of 
the Hugoniot curve is that shown in figure 8, even if the condition (3.19) does 
not hold but only the weaker condition 

2 1 0  2 GIO. (3.38) 

But it must be pointed out that this difference has no physical meaning. 



646 Barbara Schmitt-vm Schubert 

3.5. Existence and uniqueness of compressive shock waves 
From figure 8 it can be deduced that on the Hugoniot curve 

SG<‘SGO for E * ~ O .  (3.39) 
Since only final states with sG 2 sG0 may be reached physically, it follows from 
(3.39) that a discontinuous change of state leads to a positive value of e*; i.e. only 
compression shocks but no rarefaction shocks are possible (see (3.23) and (A 3)). 

For a given upstream state of a mixture, say (eo,po, vG0), the Hugoniot curve 
giving all possible downstream values (€*, p*)  is uniquely determined. Using 
the equations (2.1)-(2.3), (2.5) and the definitions (3.23)) one finds the following 
relation between TI* and E* : 

(3.40) 

Comparison of (3.40) with the equation (3.27) of the curves N = const. shows 
that by choosing a certain upstream velocity u,, exactly one of these curves is 
selected. The downstream values e* and p* are represented by the co-ordinates 
of the intersection point of this special curve and of the Hugoniot curve. Since 
on each curve N = const., a t  most one point is situated where H = 0 and sG > sG0, 
in this way the quantities E* and p* are determined uniquely. 

From figure 8 it may be concluded that exactly one point of this kind exists, if in 
the origin 0 the slopeof the selected curve N = const. exceeds that of theisentrope 

(3.41) 

From this, the following condition for the upstream velocity uo is deduced, 
using (3.27), (3.28), (3.40), (3.8), (3.9), (3.23) and (3.3): 

The right-hand side of this inequality is the square of the velocity of sound in 
the mixture, in which the relaxation processes are frozen (see Kraiko & Sternin 
1965). Denoting this frozen velocity of sound by b, one may write 

u; > b;. (3.42) 

This condition corresponds exactly to that which is known for the existence of 
a compressive shock wave in a pure gas. But attention should be paid to the fact 
that, since the frozen velocity of sound in the mixture exceeds the velocity of 
sound in the gas, the presence of the particles requires a larger upstream velocity 
uo for a frozen shock to exist. This effect is caused by the acceleration of the 
particles by the action of the pressure gradient, and it vanishes if the influence 
of the finite particle volume fraction is neglected.? 

The final values of E* and p* are positive, and hence (on reintroducing the 

index 3’) E R  > €0’ (3.43) 

PI7 > Po. (3.44) 

t This result is not contained in Rudinger’s (1965) paper because he argued that, in the 
case of frozen shocks, the influence of finite eon the flow conditions in the gas is much smaller 
than in the case of equilibrium shocks. Hence he neglected this influence in the first case. 
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Taking into account the properties of v@(E) leads to the conclusion that vaF is 
uniquely determined too and that, as mentioned above, 

VaB < "GO. (3.45) 

On the assumption that (3.12) and (3.17) hold, the function L defined by (3.4) 
is positive, as the following transformation shows : 

1 
L(G €0)  = __ {Eo( 1 - E )  + €( 1 - E o ) } .  

€+€O 

Hence it may be deduced from (2.1)-(2.3), (2.5) and (3.44) that uF is uniquely 

U F  < UO. (3.46) determined too and that 

Further, it follows from (2.2) and (3.43) that 

V F  < uo. (3.47) 

The examination of the final state of the mixture is completed by a relation 
between vF and uR, which is derived from (2.1)-(2.2): 

(3.48) 

€ 
where Gw = r s V a ( E ) .  

In  view of (3.3) differentiation of this function leads to: 

-1 
{(PO(+ - € 0 )  - (1 - E o ) )  E 2  + frPo€.8. 

Po"2(1 -COY 
$'(El = 

Since in the curly brackets the factor of e2 is positive on the assumptions (3.1 1 )  and 
(3.12) (cf. appendix A), $ ( E )  decreases monotonically with increasing E .  Thus 
(3.43) and (3.48) give 

V F  > U F .  (3.49) 

4. Partly frozen shock waves with temperature equilibrium 
In  this section the length which is characteristic for the equilibration of the 

temperatures is assumed to be much smaller than the length which is character- 
istic for the equilibration of the velocities by the action of viscous drag. In  
this case, in a suitably chosen scale, only the velocities of both media differ, 
while the temperatures are always the same. Hence also a discontinuity is 
partly frozen. The flow conditions at the downstream side of such a partly frozen 
shock (index 11) are characterized by (2.1)-(2.5) and (2.8). In  this case (2.4) may 
be simplified with (2.1), (2.2) and (2.8): 

The ratio of the mass of the particles to that of the gas is denoted by 7: 
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Attention should be paid to the fact that  only (2.8) and (4.1) differ from the corre- 
sponding equations for frozen shocks. The difference in these two equations, 
which have the meaning of energy balances, is a consequence of the over-all 
equilibrium of the temperatures. Because of the similarity of the relations charac- 
terizing completely and partly frozen shocks, the proof given in the third section 
needs only minor modifications in order to fit to the present case. This will be 
sketched in the following. 

An Hugoniot function may be defined by 

(From now on the index I1 is dropped.) Contrary to a frozen shock, which 
causes only a change of the entropy sG of the gas, a partly frozen shock also gives 
rise t o  a change of the entropy sp of the particles, which is given by 

Tpds,  = CPdTp. (4.3) 

If the upstream and downstream sides of the shock are denoted by + and - 
respectively, the whole rate of entropy production across the shock is; 

(4.4) 
where the quantity s is defined by: 

(4.5) 

Note that the quantity s does not have the meaning of an entropy of the mixture. 
Such an entropy cannot be defined, since both components move with different 
velocities. 

Only those partly frozen shocks may exist physically for which the whole 
rate of entropy production given by (4.4) is positive or zero. From this one 
may conclude that the quantity s must increase or remain constant. Hence, in 
this case, the curves s = const. play the same part as the isentropes sc = const. 
did in the case of frozen shocks. For this reason, the shape of the curves s = const. 
must be studied in the (e*,p*)-plane. 

Using (2.lO), (4.3), (2.8) and (A3) one deduces from (4.5) 

The quantity S is given by 6 = cp/cp, where cp is the specific heat of the gas a t  
constant pressure. Further differentiation leads to 
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ThereIation (4.7) corresponds exactly to (3.14). Hence, on the assumptions (3.11), 
(3.12)) (3.17) and 

corresponding to (3.19), it may be shown that 

(4.10) 

Further, on taking account of (2.11)-(2.14) it may be shown from (4.5), (4.3) 
and (2.8) that 

(4.12) 

Because of the validity of (4.6) and (4.10)-(4.12) the qualitative shape of the 
curves s = const. is the same as that of the curves sG = const. discussed in the 
third section. 

By introduction of the quantity s, the differential of the Hugoniot function 
defined in (4.2) may be written as: 

dH = 2(1+70)TGd8+p0p*&!dN. (4.13) 

From this point the considerations may be completed in an analogous way to 
that for frozen shocks. It follows that a partly frozen compressive shock with 
temperature equilibrium exists and is uniquely determined, if (3.11), (3.12)) 
(3.17) and (4.9) hold. 

Along the Hugoniot curve in the vicinity of the origin, the deviation of s from 
the value so is of the third order in c* (cf. (3.35)): 

where 

(4.14) 

(4.15) 

Taking account of (3.37) and of y > 1 it may be concluded from (4.15) that 

G2 < 1. (4.16) 

Hence, in the case of extremely weak shock waves the assumption (4.9) may be 
replaced by the weaker condition 

Z2* 6 2 0 )  (4.17) 

t Note that, if the gas follows the perfect gas law, the left-hand side of (4.9) is given by 

Hence (4.9) is satisfied well in this case. 
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which corresponds to (3.38). As in the case of frozen shock waves, the difference 
between (3.19) and (3.38), so here that between (4.9) and (4.17) has no physical 
meaning. 

For a partly frozen shock with temperature equilibrium the condition for the 
upstream velocity takes the form 

Ut  > c;o, (4.18) 

where (4.19) 

The quantity c2 is the velocity of sound in the mixture, in which the velocity 
equilibration by viscous drag is frozen, while the temperatures of both com- 
ponents are always the same.? Thus also the condition (4.18) corresponds exactly 
to that known for the existence of a compressive shock in a pure gas. Since 
y > 1, the quantity c2 is smaller than the frozen velocity of sound, and hence a 
partly frozen shock is possible a t  a lower upstream velocity u,, than a frozen 
shock. That is because, in the scale chosen, a continuous change of flow con- 
ditions may appear as a discontinuity in this case. 

To complete the discussion of this case it is pointed out that the downstream 
00w conditions are characterized by inequalities corresponding to (3.43)-( 3.47) 
and (3.49). 

5. Shock waves with velocity equilibrium 
In  this section it is assumed that, by choosing a suitable scale, the relaxation 

process of the particle velocity has been removed from consideration. Thus both 
components move with the same velocity and (2.1)-(2.4) reduce to 

u a0 

11 = 110, 

U2 ut - + p  =-+Po, 

- 

vM 'MO' 

V M  'MO 

h M  + &u2 = h M 0  + iui, 
where v, is the specific volume of the mixture given by 

1 1 - €  
- = __ + q p p ,  
Vn f  VG 

and h, is the enthalpy per unit mass of the mixture 

1 m,+ ( C p T p + ; ) .  

h f i f = l + q ,  1 + q 0  

(5.4) 

(5.5) 

These equations show that the behaviour of the mixture is analogous to that of 
a single medium in which a thermodynamic relaxation process, such as the 
relaxation of the temperature of vibration, takes place. 

(Schmitt-von Schubert 1969). 
t A derivation will be given in a paper concerning sound waves in a gas-particle flow 
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In this case a shock wave appears either as an equilibrium or a partly frozen 
shock wave, depending on whether the length of the scale is also much greater 
than the relaxation length of the temperature equilibration. Thus the equations 
given above are completed by the relation (2.6) or (2.8) for a partly frozen or 
equilibrium shock wave, respectively. 

Taking into account the relation 

which results from (5.2) and (5 .5)  by elimination of 8, it is seen that h, may be 
written as a function of vM and p alone, in both cases. The following definition 
of an Hugoniot function is suggested by the analogy to the flow of a single 
medium : 

Hence, the Hugoniot curveH = Oisgiven in the (v,,p)-plane by a single relation. 
In  this case, unlike that considered in the last section, one may speak of the 

entropy sM per unit of mass ofthe mixture. This quantity is given by the weighted 
mean of the entropies S, and sp ,  

( 5 4  = 2 ( h A f - h M O ) - ( P - P O )  (vM+vMO). 

After some algebra, and using (2.13) and (2.14), it may be concluded from this 
equation that the following inequalities hold: 

Hence, on the assumptions 

(5.10) 

(5.11) 

(5.12) 

the qualitative shape of the isentropes ~ M ( v ~ [ , P )  = const. agrees with that which 
the isentropes s G ( v G , P )  = const. of the pure gas have on the assumption 

(5.13) 

The last inequality holds in general for the common gases. Since vM is proportional 
to v,, and since in the case of frozen particle temperature the entropy sM is 
constant if and only if sG is constant, the first assumption of (5.12) is identical 
with (5.13). The second assumption of (5.12)) which concerns the case of total 
equilibrium, is merely analogous to (5.13). 

With the use of the quantity sM the differential of the Hugoniot function takes 

dH = 2T,dS~+pop"RdQ, (5.14) the form 

where R = VMOV%, (5.15) 
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(5.16) 

(5.17) 

The curves Q = const. are straight lines through the origin of the (v&,p*)-plane. 
Thus the close analogy to a pure gas, studied by Cowan (1954,  is demonstrated. 

Hence one may continue the examination in the same way as Cowan did. The 
result corresponds to that concerning the pure gas: if and only if the upstream 
velocity u,, exceeds the velocity of sound, i.e. if 

ui > c&, respectively, u; > c:, (5.18) 

where (5.19) 

there exists a uniquely determined partly frozen, respectively equilibrium, com- 
pressive shock wave. The upstream values of the flow variables vM,p  and u are 
related to their downstream values by inequalities corresponding to (3.44)- 
(3.46), and thus also corresponding to those which are valid for the pure gas. 

Comparison of c1 and c with b and c2 in view of p > 2 leads to the inequalities 

b2 > > c2. (5.20) 

Hence, an equilibrium shock may exist a t  the lowest upstream velocity. Partly 
frozen shocks require a higher value of u,,, but this value still lies below that 
needed for frozen shocks. 

These facts are to be understood in the following way. A change of the flow 
conditions is possible if the upstream velocity exceeds the equilibrium velocity 
of sound c,. This change of state is a continuous one (i.e. a fully dispersed wave) 
if the upstream velocity is smaller than the frozen velocity of sound b,, while it 
consists of a discontinuity followed by a region of continuous change of the 
flow parameters (i.e. a partly dispersed wave) if the upstream velocity is larger 
than the frozen velocity of sound. By suitable choice of the scale in each case, 
the whole change of the flow conditions may appear as an equilibrium shock, or, 
in those cases where the upstream velocity exceeds one of the partly frozen 
velocities of sound cl0 and czo, as a partly frozen shock followed by a region of 
continuous change of state. 

Attention should be paid to the fact that this qualitative behaviour of the 
mixture is analogous to that of a pure gas in which two thermodynamic relaxation 
processes are possible. But it must be emphasized that this analogy could not 
have been anticipated; for, if the constituents of the mixture do not move 
with the same velocity, there is an essential difference between the equations 
Characterizing the flow of the mixture and those characterizing the flow of 
such a gas. 

t The equation for the partly frozen velocity of sound c1 was given by Kraiko & 
Sternin (1965), the equation for the equilibrium velocity of sound c was given by 
Rudinger (1965). 
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Appendix A 

entiated : 
In  order to get a qualitative discussion of the function v,(E), (3.3) is differ- 

a t ,  3p0s; 1 1 - --+- 
as2 (1 €3 €4)- 

Hence the following table may be realized: 

E 

--oo Asymptotically N Po E P O  

+ O  +a Too 

€0 1 

- &Po 

d2F, 
de2 

-0 

f O  

~ 

1 0 ta0 0 

> 1  < o  
+a Asymptotically N Po€ P O  + O  

Here 

The functions a. = 0 and Po = 0 are shown in figure 9. It may be seen that, on 
the assumptions (3.11) and (3.12), the following inequalities are valid: 

a0 > 0, po 2 0. 

Since vG(s) does not vanish at  more than three real values of e)  this function 
has the qualitative shape shown in figure 10. By consideration of the physical 
meaning of E and vG, it is concluded that only the domain bounded by e = 0 and 
E = E~ with ez =/= 1 and vG(es) = 0 has physical relevance. Thus in this paper ‘the 
function vG(s))  always stands for that part of this function. From this restriction 
it follows that both vG(e) and e(vG) are single-valued functions, and that 
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t 
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FIGURE 9. The curves a0 = 0 (-) and Po = 0 (-.-). 

FIGURE 10. Qualitative shape of the function FG(e) for 
P o  2 2p0~€0/(1-€0)}2: ---, -. 

Appendix B 
In  order to give an estimation of the functionf(6) defined by (3.16), it is first 

noted that 

Hence the following definition of a function g(e) is suggested: 

This function may be rearranged in the following way: 

g(@ = &A4 + 92(4), 



where 

The assumptions (3.11) and (3.12) lead to 

a1 < 0)  a3 > 0. 

g l ( 4  < 0, gZ(4 < 0; 

Using these inequalities and the assumption (3.17) one may verify that 

hence g(4 0. 

f(4 < 3. 
The relations (B 2) and (B 4) lead to the conclusion that 
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